Received 1 June 2006

Accepted 3 June 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bin Yu, Xiao-Qing Wang,* Ru-Ji Wang, Guang-Qiu Shen and De-Zhong Shen

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail: xqwang@tsinghua.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.046 wR factor = 0.132 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. A 1:1 cocrystal of sebacic acid and 4,4'-bipyridine

The crystal structure of the title compound, $C_{10}H_8N_2 \cdot C_{10}H_{18}O_4$, consists of sebacic acid and 4,4'-bipyridine molecules. The sebacic acid molecule displays an extended planar structure, but the pyridine rings of the 4,4'-bipyridine molecule are twisted relative to each other, with a dihedral angle of 15.78 (7)°. The centroid-to-centroid separation of 3.6366 (11) Å indicates π - π stacking between parallel pyridine rings.

Comment

As part of our ongoing investigation of non-covalent interactions, we report here the crystal structure of the title compound, (I).

The crystal structure of (I) consists of sebacic acid molecules and 4,4'-bipyridine molecules (Fig. 1). The two pyridine rings of the 4,4'-bipridine molecule are twisted relative to each other, with a dihedral angle of $15.78 (7)^{\circ}$. The torsion angles (Table 1) indicate the extended planar conformation of the skeleton of sebacic acid.

Classical O-H···N and weak C-H···O hydrogen bonds occur (Table 2), which help to stabilize the crystal structure of (I). The centroid-to-centroid separation of 3.6366 (11) Å indicates the existence of π - π stacking between parallel N2pyridine and N2^v-pyridine rings [symmetry code: (v) 1 - x, 2 - y, 1 - z.

Experimental

An aqueous solution (15 ml) of sebacic acid (0.101 g, 1 mmol) and 4,4'-bipyridine (0.096 g, 1 mmol) was sealed in a Parr Teflon-lined stainless steel vessel (25 ml) and heated at 453 K for 72 h. After

© 2006 International Union of Crystallography All rights reserved

Figure 1 The molecular structure of (I), with 50% probability displacement ellipsoids (arbitrary spheres for H atoms). cooling the mixture to room temperature, single crystals of (I) were obtained.

V = 912.8 (4) Å³

 $\mu = 0.09 \text{ mm}^{-1}$

T = 295 (2) K Lath, colourless $0.45 \times 0.17 \times 0.09$ mm

 $D_x = 1.304 \text{ Mg m}^{-3}$ Mo *K* α radiation

Z = 2

Crystal data

$C_{10}H_{18}O_4 \cdot C_{10}H_8N_2$
$M_r = 358.43$
Triclinic, P1
a = 8.9652 (18) Å
b = 9.5699 (19)Å
c = 11.700 (2) Å
$\alpha = 90.67 \ (3)^{\circ}$
$\beta = 95.82 \ (3)^{\circ}$
$\gamma = 113.71 \ (3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID IP area- detector diffractometer	4146 independent reflections 2837 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.040$
Absorption correction: none	$\theta_{\rm max} = 27.5^{\circ}$
9086 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $w R(F^2) = 0.132$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0708P)^2]$ where $P = (E^2 + 2E^2)/3$
S = 1.01 4146 reflections	where $F = (F_o + 2F_c)/5$ $(\Delta/\sigma)_{\text{max}} = 0.002$ $\Delta \rho = 0.27 \text{ e} \text{ Å}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1

Selected torsion angles (°).

O1-C11-C12-C13	2.8 (2)	C15-C16-C17-C18	-178.14 (12)
O2-C11-C12-C13	-178.02(12)	C16-C17-C18-C19	-179.48(12)
C11-C12-C13-C14	-179.91(12)	C17-C18-C19-C20	178.61 (12)
C12-C13-C14-C15	179.23 (12)	C18-C19-C20-O3	1.8 (2)
C13-C14-C15-C16	-178.32(12)	C18-C19-C20-O4	-178.02(12)
C14-C15-C16-C17	179.65 (12)		

Table 2 Hydrogen bond geometr

H	lyd	rogen-	bond	geometry	(A,	°).
---	-----	--------	------	----------	-----	-----

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.82	1.84	2.6418 (15)	165
0.82	1.84	2.6436 (15)	167
0.93	2.56	3.486 (2)	174
0.93	2.59	3.511 (2)	173
	<i>D</i> -H 0.82 0.93 0.93	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.82 & 1.84 \\ 0.82 & 1.84 \\ 0.93 & 2.56 \\ 0.93 & 2.59 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x - 1, -y + 2, -z; (iii) -x, -y + 1, -z + 1; (iv) -x, -y + 2, -z.

Carboxyl H atoms were located in a difference Fourier map and refined as riding with O–H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed in calculated positions, with C–H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (grant No. 50132010) and the '985' Programme of Tsinghua University, China.

References

Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.