Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bin Yu, Xiao-Qing Wang,* Ru-Ji Wang, Guang-Qiu Shen and De-Zhong Shen

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail:
xqwang@tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.046$
$w R$ factor $=0.132$
Data-to-parameter ratio $=17.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
A $1: 1$ cocrystal of sebacic acid and 4,4'-bipyridine

The crystal structure of the title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}$, consists of sebacic acid and 4,4'-bipyridine molecules. The sebacic acid molecule displays an extended planar structure, but the pyridine rings of the 4,4'-bipyridine molecule are twisted relative to each other, with a dihedral angle of $15.78(7)^{\circ}$. The centroid-to-centroid separation of 3.6366 (11) \AA indicates $\pi-\pi$ stacking between parallel pyridine rings.

Comment

As part of our ongoing investigation of non-covalent interactions, we report here the crystal structure of the title compound, (I).

(I)

The crystal structure of (I) consists of sebacic acid molecules and $4,4^{\prime}$-bipyridine molecules (Fig. 1). The two pyridine rings of the $4,4^{\prime}$-bipridine molecule are twisted relative to each other, with a dihedral angle of 15.78 (7) ${ }^{\circ}$. The torsion angles (Table 1) indicate the extended planar conformation of the skeleton of sebacic acid.

Classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds occur (Table 2), which help to stabilize the crystal structure of (I). The centroid-to-centroid separation of 3.6366 (11) \AA indicates the existence of $\pi-\pi$ stacking between parallel N2pyridine and $\mathrm{N} 2^{\mathrm{v}}$-pyridine rings [symmetry code: (v) $1-x$, $2-y, 1-z$.

Experimental

An aqueous solution (15 ml) of sebacic acid $(0.101 \mathrm{~g}, 1 \mathrm{mmol})$ and 4,4'-bipyridine ($0.096 \mathrm{~g}, 1 \mathrm{mmol}$) was sealed in a Parr Teflon-lined stainless steel vessel (25 ml) and heated at 453 K for 72 h . After

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
cooling the mixture to room temperature, single crystals of (I) were obtained.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4} \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$	$V=912.8(4) \AA^{3}$
$M_{r}=358.43$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.304 \mathrm{Mg} \mathrm{m}^{-3}$
$a=8.9652(18) \AA$	Mo $K \alpha$ radiation
$b=9.5699(19) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$c=11.700(2) \AA$	$T=295(2) \mathrm{K}$
$\alpha=90.67(3)^{\circ}$	Lath, colourless
$\beta=95.82(3)^{\circ}$	$0.45 \times 0.17 \times 0.09 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID IP areadetector diffractometer ω scans
Absorption correction: none
9086 measured reflections

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0708 P)^{2}\right]$
$w R\left(F^{2}\right)=0.132$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.01$	$(\Delta / \sigma)_{\max }=0.002$
4146 reflections	$\Delta \rho_{\max }=0.27 \mathrm{e}^{-3}$
235 parameters	$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

O1-C11-C12-C13	$2.8(2)$	C15-C16-C17-C18	$-178.14(12)$
O2-C11-C12-C13	$-178.02(12)$	C16-C11-C18-C19	$-179.48(12)$
C11-C12-C13-C14	$-179.91(12)$	C17-C18-C19-C20	$178.61(12)$
C12-C13-C14-C15	$179.23(12)$	C18-C19-C20-O3	$1.8(2)$
C13-C14-C15-C16	$-178.32(12)$	C18-C19-C20-O4	$-178.02(12)$
C14-C15-C16-C17	$179.65(12)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.82	1.84	$2.6418(15)$	165
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 2^{\text {ii }}$	0.82	1.84	$2.6436(15)$	167
$\mathrm{C} 2-\mathrm{H} 2 B \cdots 1^{\text {iii }}$	0.93	2.56	$3.486(2)$	174
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {iv }}$	0.93	2.59	$3.511(2)$	173
Symmetry codes:	(i) $-x+1,-y+1,-z+1 ;$	(ii) $-x-1,-y+2,-z ;$	(iii)	
$-x,-y+1,-z+1 ;$ (iv) $-x,-y+2,-z$.				

Carboxyl H atoms were located in a difference Fourier map and refined as riding with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.97 \AA$ (methylene), and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 50132010) and the '985' Programme of Tsinghua University, China.

References

Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

